
Solving Tree Problems using Category Theory

Rafik Hadfi

Monash University

18 July 2018

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 1 / 32



1 General Problem-solving
Introduction
Analogical Reasoning
Problem Representation

2 Tree Problems
Motivation
Definition

3 From Problems to Categories
Category Theory
Problem and Solution Categories

4 Implementing the functor
Functor as Deep Neural Network

5 Conclusion



General Problem-solving
Introduction

General Problem-solving is one of the main goals of AI since the early
days of Computer Science.
Progress in separate domains, using

Algorithms, Computational Game Theory, Computer Vision, Machine
Leaning, Automated Artificial Agents, etc.

Yet current AI is incapable of reaching the human ability to solve
wide ranges of problems.
Humans are good at solving problems because they can reason about
unknown situations. They are capable of asking hypothetical
questions that can e�ectively be answered through analogical
reasoning.

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 3 / 32



General Problem-solving
Summary

1 Formalising analogical reasoning for general problem-solving.
2 Proposing a category-theoretic formalism for a class of problems

represented as arborescences. Many real-world and AI problems are
amenable to such structures.

3 Combing problems and solutions into two distinct categories, allowing
us to define equivalence classes on problems (Metric).

4 Proving the existence of functors between the categories and its
algorithmic interpretation.

5 Proposing an implementation of the functor as a Deep Neural
Network.

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 4 / 32



General Problem-solving
Analogical Reasoning

Analogical reasoning is when concepts from one space are mapped to
the concepts of another space after noticing structural similarities or
equivalences between the two.

General situations involving images, sounds, interactions, etc.
Complex tasks like puzzles, sports, etc.

Solving problems using analogies requires the ability to identify
relationships amongst complex objects and transform new objects
accordingly.
An analogy is usually described as «A is to B as C is to D»

Portugal : Lisbon :: Russia: ?

Portugal : Lisbon :: Russia: Moscow
Bill: Hillary :: Barack : ?
Bill: Hillary :: Barack : Michelle

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 5 / 32



General Problem-solving
Analogical Reasoning

Analogical reasoning is when concepts from one space are mapped to
the concepts of another space after noticing structural similarities or
equivalences between the two.

General situations involving images, sounds, interactions, etc.
Complex tasks like puzzles, sports, etc.

Solving problems using analogies requires the ability to identify
relationships amongst complex objects and transform new objects
accordingly.
An analogy is usually described as «A is to B as C is to D»

Portugal : Lisbon :: Russia: ?
Portugal : Lisbon :: Russia: Moscow

Bill: Hillary :: Barack : ?
Bill: Hillary :: Barack : Michelle

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 5 / 32



General Problem-solving
Analogical Reasoning

Analogical reasoning is when concepts from one space are mapped to
the concepts of another space after noticing structural similarities or
equivalences between the two.

General situations involving images, sounds, interactions, etc.
Complex tasks like puzzles, sports, etc.

Solving problems using analogies requires the ability to identify
relationships amongst complex objects and transform new objects
accordingly.
An analogy is usually described as «A is to B as C is to D»

Portugal : Lisbon :: Russia: ?
Portugal : Lisbon :: Russia: Moscow
Bill: Hillary :: Barack : ?

Bill: Hillary :: Barack : Michelle

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 5 / 32



General Problem-solving
Analogical Reasoning

Analogical reasoning is when concepts from one space are mapped to
the concepts of another space after noticing structural similarities or
equivalences between the two.

General situations involving images, sounds, interactions, etc.
Complex tasks like puzzles, sports, etc.

Solving problems using analogies requires the ability to identify
relationships amongst complex objects and transform new objects
accordingly.
An analogy is usually described as «A is to B as C is to D»

Portugal : Lisbon :: Russia: ?
Portugal : Lisbon :: Russia: Moscow
Bill: Hillary :: Barack : ?
Bill: Hillary :: Barack : Michelle

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 5 / 32



General Problem-solving
Problem representation

Despite their intuitive appeal, analogies do have the drawback that, if
the structure is not shared across the full problem space, we might
end up with a distorted understanding of a new problem than if we
had not tried to think analogically about it.

It is therefore crucial to find a formalism that translates problems into
the representation that allows comparisons and transformations on
its structures.

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 6 / 32



General Problem-solving
Problem representation

Role of Representation in Problem-solving

Informal Problem Solution

Formal

Representation Output

Solve

represent interpret
Compute

1Poole, David L., and Alan K. Mackworth. Artificial Intelligence: foundations of
computational agents. Cambridge University Press, 2010.

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 7 / 32



General Problem-solving
Problem representation

Abstracting problems and solutions

Informal Problem Solution

Formal

Representation Output

Category P Category S

Solve

represent interpret
Compute

abstract abstract
Map

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 8 / 32



Tree Problems

How to represent problems in the most abstract fashion?

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 9 / 32



Tree Problems
How to represent problems in the most abstract fashion?

r

Ê1

p3
u3 Ê2

Ê3p5
u5

Ê4p4
u4

Ê5

Ê6p2
u2p1

u1

fiú = arg max
fiœP

ÿ

eœfi
fi:ræÊ

u(e) log p(e)

rÊ

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 10 / 32



Tree Problems
How to represent problems in the most abstract fashion?

Link

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 11 / 32

https://www.youtube.com/watch?v=k1tSK5V1pds


Tree Problems
How to represent problems in the most abstract fashion?

rÊ r

Ê

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 12 / 32



Tree Problems
Definition

Definition
We define tree problems as an umbrella term for a class of problems in AI.
Such problems are encountered in Decision-making, Maze Search, and
Algorithmic Game Theory.
Given a directed rooted tree with predefined edge labels and a set of
terminal vertices, the corresponding tree problem possesses at most one
solution. The solution corresponds to a path from the root of the tree to
one of its terminal nodes.

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 13 / 32



Tree Problems
Definition

Formally, a problem P is represented by the tuple TP = (T , L, A), defined
as following.

The tuple T = (r , V , E ) is a labelled tree with root r , a set of nodes
V , and a set of edges E ™ V ◊ V . The set V is partitioned into a set
of internal nodes I and a set of terminal nodes �. We note V (T ) and
E (T ) as shorthands for the vertices and edges of T .
The tuple L = (LV , LE ) defines the “labelling” functions
LV : V æ Rn and LE : E æ Rm. The numbers n and m are
respectively the numbers of vertice and edge features.
The algorithm A : T ‘æ SP implements an objective function that
assigns solution SP to T .

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 14 / 32



Tree Problems
Characteristic forms

Tree T

r

—
a1.2

b3.1
0.4

–
c5.7

d1
2.5

Characteristic matrix of T

MT =
ab ac ad bc bd cd pa pb pc pd3 41 0 0 0 0 1 1 1 1 1
0.4 0 0 0 0 2.5 1.2 3.1 5.7 1

The characteristic form „⁄(T ) = ⁄MT is parameterised by
⁄ œ [0, 1]m+1 with

qm+1
j=1 ⁄j = 1.

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 15 / 32



From Problems to Categories

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 16 / 32



From Problems to Categories

Informal Problem Solution

Formal

Representation Output

Category P Category S

Solve

represent interpret
Compute

abstract abstract
Map

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 17 / 32



From Problems to Categories
Category Theory

“An abstract way of representing things and ways to go between things.”
A category C is defined by its

Objects Ob(C)
Morphisms MorC

if A, B œ Ob(C), then MorC(A, B) is a
collection of morphisms, and
f : A æ B means f œ MorC(A, B)

Composition law ¶
associates to each f : A æ B and
g : B æ C a morphism g ¶ f : A æ C .
has a neutral element:
’X œ Ob(C), ÷idX : X æ X such that
’f : A æ B, idB ¶ f = f = f ¶ idA
is associative: (h ¶ g) ¶ f = h ¶ (g ¶ f )

Commutative diagram:

A

B

C

ff Õ

h

idA

idB

g Õ g

idC

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 18 / 32



From Problems to Categories
Category Theory

Categories are everywhere.

Set: (Sets, Functions, ¶)
Mon: (Monoids, Monoid morphisms, ¶)
Vec: (Vector spaces, Linear functions, ¶)
Grp: (Groups, Group morphisms, ¶)
Graph: (Vertices, Paths, Path concatenation)
Hask: (Haskell types, Functions, (.) )
Any deductive system: (Theorems, Proofs, Proof concatenation)
...

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 19 / 32



From Problems to Categories
Category Theory

Another important notion is that of a
(covariant) functor, which is a morphism of
categories. A functor F : C æ CÕ is made of

A function mapping objects to objects,
F : Ob(C) æ Ob(CÕ).
For any pair of objects A, B œ C, we
have
F : MorC(A, B) æ MorCÕ(F (A), F (B))
with the natural requirements of
identity and composition:

Identity: F (idA) = idF (A)
Composition: F (f ¶ g) = F (f ) ¶ F (g)

A AÕ

B BÕ

F

f

F

F (f )

Functors will be later used to formalise analogies between problems.

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 20 / 32



From Problems to Categories
Problem and Solution Categories

Theorems
Tree problems define a category T .
The solutions to tree problems define a category S.

Proof: In order for T (resp. S) to be a category, we need to characterise
its objects Ob(T ), morphisms MorT and their laws of composition.

TP

TP Õ TP ÕÕ

f

g

g¶f

SP

SP Õ SP ÕÕ

f Õ

g Õ

g Õ¶f Õ

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 21 / 32



From Problems to Categories
Problem and Solution Categories

Theorem
There exists a functor F from the category of tree problems T to the
category of solutions S.

SP

TP

SP Õ SP ÕÕ

TP Õ TP ÕÕ

F (f ) F (g¶f )

f

F

F (g)
F

g

F

g¶f

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 22 / 32



From Problems to Categories
Solving Problems using Functors, Equivalence

The hypothesis is that given T and S, it is possible to exploit
analogies between solved and unsolved problems using functors.
The analogy «S’ is to S as P’ is to P» translates to
P f≠æ P Õ F==∆ S F f≠≠æ S Õ.
Mapping problems to solutions requires a level of identification
between the two. Isomorphisms are in general rare and di�cult to
characterise. We need to “weaken” the isomorphism by descending
from isomorphism of categories to equivalence of categories.

Functor ºAdjunction ºEquivalence ºIsomorphism ºIdentity
(Weaker) (Stronger)

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 23 / 32



From Problems to Categories
From equivalence to metric

The equivalences of categories of trees (T / ƒ) define what can be
identified as the level of similarities or analogy between the problems
that they represent. Similarly, the equivalence of categories of
solutions (S/ ƒ) defines the levels of similarities between solutions.
If the tree TP œ Ob(T ) is analogous to other trees {TP Õ}P Õ ”=P , it will
be useful to find the “most” analogous ones.
This could be done using the metrics

d⁄(TP , TPÕ) = Î„⁄(TP) ≠ „⁄Õ(TPÕ)Î is a metric on Ob(T ).
d(SP , SPÕ) = ÎSP ≠ SPÕÎ is a metric on Ob(S), SP , SPÕ œ {0, 1}n.

Usage in learning and in accelerating the convergence when “training”
the functor.

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 24 / 32



Implementing the functor
Idea

Learning the functor as a function that reproduces an algorithm or a
nonlinear system.

An intuition from the Universal Approximation Theorem
A feed-forward network with a single hidden layer containing a finite
number of neurones can approximate continuous functions on compact
subsets of Rn, under mild assumptions on the activation function.

Can we construct the functor as a Deep Neural Network?

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 25 / 32



Implementing the functor
Sketch

1 Define the mappings in P f≠æ P Õ F==∆ S F f≠≠æ S Õ

2 Embedding P, S, P Õ, S Õ in the same space E to allow the encoding
3 Find the inter relationship between P and S as f (S) ≠ f (P)
4 Transformation of f (P Õ) + f (S) ≠ f (P)
5 Decoding g(f (P Õ) + f (S) ≠ f (P))

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 26 / 32



Implementing the functor
Architecture

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 27 / 32



Conclusion and future directions

General problem representation using arborescent structures.

Category-theoretic formulation of problems and solutions.

Solving problems using functors, constructed as Deep Neural
Networks.

Next
Complexity of the functor O(1) vs. the actual algorithm O(n).
Apply to Raven’s Progressive Matrices as a general test of intelligence.
Neural basis for analogy-making?

Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 30 / 32



Rafik Hadfi (Monash University) AGI & Category Theory 18 July 2018 31 / 32


	General Problem-solving
	Introduction
	Analogical Reasoning
	Problem Representation

	Tree Problems
	Motivation
	Definition

	From Problems to Categories
	Category Theory
	Problem and Solution Categories

	Implementing the functor
	Functor as Deep Neural Network

	Conclusion

	fd@rm@0: 


