Natural Scene Perception

PSY3280 - Week 10 Lecture (01 Oct 2018)

Rafik Hadfi Zhao Hui Koh

Learning Objective - Natural Scene

Human? Machine?

Natural scene - Human perception

Natural Scene 1 - Words to describe the image?

Natural Scene 2 - Words to describe the image?

Natural Scene 3 - Words to describe the image?

Richness of a natural scene (Fei-Fei et al., 2007)

- The content/information of "gist"
- Objects, Physical Appearance, Spatial relations between objects
- Global semantic/context
- Hierarchical relationship (taxonomy) of object categories

Sample responses (Features and Semantic)

Easy

Complex

PT = 107 ms

This is outdoors. A black, furry dog is running/walking towards the right of the picture. His tail is in the air and his mouth is open. Either he had a ball in his mouth or he was chasing after a ball. (Subject EC)

27 ms

Looked like something black in the center with four straight lines coming out of it against a white background. (Subject: AM)

PT = 500 ms

I saw a black dog carrying a gray frisbee in the center of the photograph. The dog was walking near the ocean, with waves lapping up on the shore. It seemed to be a gray day out. (Subject JB)

500 ms

This looks like a father or somebod helping a little boy. The man had something in his hands, like a LCD screen or laptop. they looked like they were standing in a cubicle. (Subject: WC)

(Fei-Fei et al., 2007)

Findings

- Richness of perception is asymmetrical (object and scene recognition)
 - Preference of outdoor (vs indoor) if visual information is scarce (small PT)
- Seem to be able to recognise objects at a superordinate category level (e.g. vehicle) as well as basic category levels (e.g. train, plane, car)
- Single fixation is sufficient for recognition of most common scenes and activities
- Sensory information (shape recognition) vs higher level conceptual information (object identification, object/scene categorisation)

Quantify richness in visual experience

- Sperling's experiment (1960) limited capacity of phenomenal vision
- Limitations of past studies on richness of visual experience (Haun et al., 2017)
 - Controlled experiments what a participant can report on (high-level categorical response, binary choice)
- "Participants were not asked"
- Previous paradigms have underestimated the amount of information available for conscious report from brief exposures to the stimulus.

F C H D J R P O D N R A

(Haun et al., 2017)

Richness - Bandwidth of Consciousness (BoC)

- IIT Information axiom Distinguishable from every other possible experience
- How bits are measured
 - Information Theory quantify bits of information (reduction of uncertainty)
 - Yes/no question from an image (presented for 1 second) 1 bit of information
 - Past research We can perceived up to maximum of 44 bits/second (Pierce, 1980)
- Honours Student's Project "A Moment of Conscious Experience is Very Informative" (Loeffler, Alon, 2017)
- Quantify the amount of information people can extract from brief exposure to a natural scene

Experiment

- Participants determined whether a word (descriptor) could describe the image (present and absent)
- Stimulus Onset Asynchrony (SOA - time between image onset and mask onset)
- Forced choice response (8 choices)
- Presence/Absence judgement+ confidence rating

Findings

- Participants' feedback
 - Shorter SOA bottom-up processing (features)
 - Longer SOA top-down processing (semantic)

Findings (cont'd)

SOA: 133ms

Exp 2 (10 questions/image)	Exp 3 (20 questions/image)
52 bits/sec	100 bits/sec

Natural scene - Machine perception

How machine sees image?

Machine learning in image perception

 Convolutional Neural Network (Image recognition & classifications, object detection, face recognition, cameras, robots)

Convolutional Neural Network (ConvNet)

Convolutional layer

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

Image

Filter

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Pooling layer

Spatial reduction

"Show and Tell" - Natural scene captions

Captions? Encoder Decoder

(Vinyals et al., 2015; LeCun et al., 2015)

Recurrent neural networks

- Best for sequential input tasks speech and language
- Process one element at a time and use hidden units to keep past history (feedback/recurrent)

- Machine translation (encoder + decoder)
 - English -> French
 - Image -> Caption

"Show, Attend and Tell" - Attention based

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A large white bird standing in a forest.

A woman holding a clock in her hand.

A man wearing a hat and a hat on a skateboard.

(Kelvin et al., 2016; LeCun et al., 2015)

Discussion

- Can an artificial neural network (e.g. ConvNet) <u>experience</u>
 visual illusion, change blindness, binocular rivalry?
 - PredNet (Watanabe et al., 2018) Rotating Snake Illusion

Is an artificial neural network conscious?

References

- Cadieu, C. F., Hong, H., Yamins, D. L. K., Pinto, N., Ardila, D., Solomon, E. A., et al. (2014). Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition. *PLOS Computational Biology*, *10*(12), e1003963–18. http://doi.org/10.1371/journal.pcbi.1003963
- Fei-Fei, L., Iyer, A., Koch, C., & Perona, P. (2007). What do we perceive in a glance of a real-world scene? *Journal of Vision*, 7(1), 10–29. http://doi.org/10.1167/7.1.10
- Haun, A. M., Tononi, G., Koch, C., & Tsuchiya, N. (2017). Are we underestimating the richness of visual experience?, 2017(1), 817–4. http://doi.org/10.1093/nc/niw023
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. *Nature*, *521*(7553), 436–444. http://doi.org/10.1038/nature14539
- Loeffler, Alon (2017). A Moment of Conscious Experience is Very Informative (Honour's thesis). Monash University, Melbourne, Australia.
- Nishimoto, S. (2015). CiNet VideoBlocks movie library. Unpublished dataset.
- Pierce, J. R. (1980). *Introduction to Information Theory Symbols, Signals and Noise* (2nd Ed.). Mineola, NY: Dover Publications.
- Watanabe, E., Kitaoka, A., Sakamoto, K., Yasugi, M., & Tanaka, K. (2018). Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction. *Frontiers in Psychology*, 9, 1143–12. http://doi.org/10.3389/fpsyg.2018.00345
- Van Essen, D. C., & Gallant, J. L. (1994). Neural mechanisms of form and motion processing in the primate visual system. *Neuron*, *13*(1), 1-10.
- Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator (pp. 3156–3164).
 Presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE.
 http://doi.org/10.1109/CVPR.2015.7298935
- Xu, K., Ba, Jimmy L, Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel., R., Bengoi., Y. (2015) Show, attend and tell: Neural image caption generation with visual attention. *Jmlr.org*