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Introduction

• An	important	task	of	the	brain	is	to	represent	the	outside	world

– How	does	it	do	it	when	it	can	only	rely	on	neural	responses	?

– What	can	be	learned	about	a	space	of	stimuli	using	only	the	
action	potentials	(spikes)	of	cells	?



Stimulus	Construction

• Three	steps:
1. Characterizing	the	space	of	(relevant)	stimuli
2. Constructing	functions relating	stimuli to	neuronal	

responses
3. Use	the	functions,	together	with	new	neuronal	activity,	to	

decode new	stimuli

• Example:	In	the	case	of hippocampal	place	cells,	the	space	of	
stimuli could	be	the	animal	current	spatial	environment;	for	
every	place	cell	one	computes	a	place	field,	i.e.,	a	function	
that	assigns	a	firing	rate	to	each	position	in	space.



Main	Results	Of	the	Paper

• Using	hippocampal	place	cells as	a	model	system,	one	can
1. Extract	global	topological	features	of	the	environment	and
2. Reconstruct	an	accurate	geometric	representation of	

physical	space,	up	to	an	overall	scale	factor,	that	can	be	
used	to	track	the	animal’s	position

• How?	Using	standard	tools	from	algebraic	topology	(persistent	
homology) and	graph	theory

- Neither	place	fields,	nor	precise	spike	timing,	nor	any	
prior	independent	measurements	of	position	are	needed



Persistent	Homology



• What	topological	features	does	the	following	data	
exhibit?	
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• What	topological	features	does	the	following	data	
exhibit?	

But:	Discrete	points	have	trivial	topologies!

Persistent	Homology



• Persistent	homology	is	an	algebraic	method	for	
discerning	topological	features	of	data

• A	method	for	computing	topological	features	of	a	
space	at	different	spatial	resolutions

Components,	holes,	voids,	graph	structures Set	of	discrete	points	with	a	metric

Persistent	Homology



• To	find	the	persistent	homology	of	a	space,	the	space	must	first	be	
represented	as	a	simplicial complex
– A	simplicial complex	is	built	from	points,	lines	segments,	triangular	faces,	and	

their	n-dimensional	counterparts

• Homology	counts	components,	holes,	voids,	etc.

Persistent	Homology



• Start	by	connecting	the	nearby	points
1. Choose	a	distance	d
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• Start	by	connecting	the	nearby	points
1. Choose	a	distance	d
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3.	Fill	in	complete	simplices
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• Start	by	connecting	the	nearby	points
1. Choose	a	distance	d
2. Connect	points	(A,B)	with	distance(	A,B)<d

3.	Fill	in	complete	simplices
4.	Homology	detects	the	holes

How	do	we	choose	d?

Persistent	Homology



• If	d	is	too	small,	we	detect	noise

• If	d	is	too	large,	we	get	one	giant	simplex	(the	trivial	homology)

Persistent	Homology



• Solution:	consider	all	distances,	until	finding	the	appropriate	one
• Each	hole	appears	at	a	particular	value	of	d	and	disappears	at	

another	value

Persistent	Homology



(1)	Cell	Groups	Reveal	Place	Field	Intersection	
Information



(A) Sample	rasters for	the	population	activity	of	five	
place	cells	in	two	different	Environments.	Cell	groups	
are	obtained	by	identifying	subsets	of	cells	that	co-fire	
within	a	coarse	time	window
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(A) Sample	rasters for	the	population	activity	of	five	
place	cells	in	two	different	Environments.	Cell	groups	
are	obtained	by	identifying	subsets	of	cells	that	co-fire	
within	a	coarse	time	window

(B)	Two	examples	of	five-cell	configurations	depicting	
collections	of	cell	groups	obtained	from	the	sample
rasters in	(A).	An	edge	represents	a	cell	group	with
two	cells	and	a	shaded	triangle	indicates	a	cell	group	
with	three	cells	(A)
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(B)	Two	examples	of	five-cell	configurations	depicting	
collections	of	cell	groups	obtained	from	the	sample
rasters in	(A).	An	edge	represents	a	cell	group	with
two	cells	and	a	shaded	triangle	indicates	a	cell	group	
with	three	cells (A)

(C)	Cells	that	co-fire	have	overlapping	place	fields.	Each	
cell	group	in	(A),	(B)	corresponds	to	a	particular	
intersection	of	place	fields,	denoted	with	matching	
color.	The	place	field	intersection	pattern	fully	
determines	the	topology	of	a	space	covered	by	convex	
place	fields

more than just coding for place [26–30], it is important to
identify—at least in theory—minimal aspects of neural activity
that yield sufficient information for construction of an accurate
representation of space.

In this work we show that a great deal of information about a
physical environment can be obtained using only very coarse
features of population spiking activity. We define a ‘cell group’ as a
collection of cells that collectively fire significantly above baseline
within a broad (,250 ms) temporal window; we do not call them
‘cell assemblies’ to avoid confusion with different timescales and
degrees of sensory control implied by this term [31–34]. We find
that the simple knowledge of which groups of hippocampal place
cells fire together is enough to (1) extract global topological
features of the environment, and (2) reconstruct an accurate
geometric representation of physical space within which the
animal’s position can be faithfully tracked. This is made possible
by using standard tools from algebraic topology and graph theory;
neither place fields, nor precise spike timing, nor any prior
independent measurements of position are needed.

Results

Cell Groups Reveal Place Field Intersection Information
Although the brain may be unable to establish direct

relationships (such as place fields) between neural responses and
external stimuli, it can in principle compare neural responses to
each other. Moreover, relationships between neural responses
reflect relationships between stimuli, and hence reveal structure of
the outside world.

In rat hippocampus, the theta-oscillation (6–10 Hz) provides a
natural timescale for organizing population activity. Cells that fire
within a few theta-cycles of each other are very likely to have
overlapping place fields. We define a cell group as a group of place
cells that collectively fire within a two theta-cycle (250 ms) time
window (Figure 1A). Note that this enables us to ignore finer spike
timing effects modulated by the phase of the theta oscillation, such
as phase precession [7,31,35–37]. Each place cell typically belongs
to multiple cell groups (Figure 1B), and the activation of a given
cell group is induced by the animal passing through the
intersection of corresponding place fields. Cell groups thus yield

place field intersection information (i.e., they reveal which subsets of
place fields overlap), even when the place fields themselves are
unknown (Figure 1C).

We first show that this intersection information can be patched
together to reveal global topological features of the environment.
The method for extracting global topological features does not
require a metric. On the other hand, by thinking of each cell
group as defining a specific location in space, we can use
intersection information to construct a metric that provides
relative distances between cell groups. This yields a geometric
representation of the external physical space, obtained without
knowing place fields. We find that this internal representation is
quite faithful to the geometry of the environment. In either case,
we need only make some basic assumptions about place fields. We
assume that place fields exist and are stable, have similar sizes, are
omni-directional, and have firing fields that are convex. These
assumptions are generally satisfied for place fields of dorsal
hippocampal place cells recorded from a freely foraging rat in a
familiar open field environment (see Methods). We also explicitly
test the importance of the assumption that place fields have similar
sizes, and find that our results are in fact fairly robust to substantial
variability in place-field sizes. Finally, we test our methods with
multipeaked place fields, and find that our algorithms can tolerate
a realistic percentage of cells having multiple firing fields, so long
as the component fields are sufficiently separated and convex.

Figure 1. Collection of cell groups uniquely determines the
topology of the environment. (A) Sample rasters for the population
activity of five place cells in two different environments. Cell groups are
obtained by identifying subsets of cells that co-fire within a coarse time
window (colored rectangles). (B) Two examples of five-cell configura-
tions (simplicial complexes) depicting collections of cell groups
obtained from the sample rasters in (A). An edge represents a cell
group with two cells and a shaded triangle indicates a cell group with
three cells; colors correspond to cell groups in (A). (C) Cells that co-fire
have overlapping place fields. Each cell group in (A), (B) corresponds to
a particular intersection of place fields, denoted with matching color.
The place field intersection pattern fully determines the topology of a
space covered by convex place fields. The first configuration in (B)
forces an arrangement of place fields with a hole in the middle (left); the
second forces a space with no holes (right).
doi:10.1371/journal.pcbi.1000205.g001

Author Summary

We construct our understanding of the world solely from
neuronal activity generated in our brains. How do we do
this? Many studies have investigated how neural activity is
related to outside stimuli, and maps of these relationships
(often called receptive fields) are routinely computed from
data collected in neuroscience experiments. Yet how the
brain can understand the meaning of this activity, without
the dictionary provided by these maps, remains a mystery.
We tackle this fundamental question in the context of
hippocampal place cells—i.e., neurons in rodent hippo-
campus whose activity is strongly correlated to the
animal’s position in space. We find that the structure of
stimulus space can be revealed by exploiting relationships
between groups of cofiring neurons in response to
different stimuli. We provide a ‘proof of principle’ by
demonstrating constructively how the topology of space
and the animal’s position in an environment can be
derived purely from the action potentials fired by
hippocampal place cells. In this way, the brain may be
able to build up structured representations of stimulus
spaces that are then used to represent external stimuli.

Cell Groups Reveal Structure of Stimulus Space
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(1)	Cell	Groups	Reveal	Place	Field	Intersection	
Information



(2)	Global	topological	features

• Often	times	an	animal’s	physical	space	has	‘‘holes’’—i.e.,	regions	in	
the	interior	of	the	environment	where	the	animal	is	unable	to	go.

• Example:	a	rat	may	be	confined	to	a	platform	with	one	or	more	
holes	in	the	middle;	similarly,	there	may	be	large	objects	inside	the	
environment	providing	obstructions	to	the	animal’s	path.

Hole	=	Region	inaccessible	to	the	animal



(3)	Topological	Features	Can	Be	Extracted	from	Cell	
Groups

• Computing	the	homology	groups	of	the	environment

• Steps:
1. Population	of	place	cells
2. Collection	of	cell	groups
3. Intersection	information
4. Homology	groups



(3)	Topological	Features	Can	Be	Extracted	from	Cell	
Groups

• Random-walk	trajectories,	5	x	2-D	flat	
environments,	each	of	side	length	L=1	m,	
with	N	=	0,1,...,4	holes

• In	each	of	300	trials,	each	of	the	five	
environments	was	covered	by	70	single-
peaked	place	fields	with	varying	radii	(0.1–
0.15	L)	and	randomly-chosen	centers

• For	each	trial,	the	first	five	homology	groups	
(H0,...,H4)	were	computed

• A	trial	was	deemed	to	be	correct if	and	only	if	
all	homology	groups	matched	the	topology	of	
the	underlying	space,	and	incorrect if	at	least	
one	homology	group	did	not	match.
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(4)	An	Internal	Representation	of	Space	Can	Be	Built	
from	Cell	Groups

An Internal Representation of Space Can Be Built from
Cell Groups

A given cell group becomes active when the animal crosses a
specific location in space, given by the intersection of the
corresponding place fields. It is thus natural that, from the brain’s
point of view, a location in space is itself defined by a cell group
(Figure 3A and 3B). The collection of all activated cell groups thus
yields a collection of points, which can be thought of as ‘‘building
blocks’’ for an internal, discretized representation of space. A set of
unrelated points, however, does not constitute a space, one must
know the relationships between points (which pairs are close, and
which are far away). Fortunately, there is a natural way to
determine when two cell groups are ‘‘close’’ to each other, based
on the number of place cells they have in common.

We say that two cell groups are neighbors if they differ by just one
place cell. By joining neighboring points with edges, one obtains a
graph (Figure 3C) that is constructed purely from cell groups,
without any explicit knowledge of place fields. In general,
neighboring cell groups with a very high percentage of overlapping
cells will represent points that are closer in space than neighbors
with small overlap. We define a dissimilarity index mk on neighboring
cell groups as the average relative distance between the centers of
adjacent regions with overlap degree k, assuming place fields of
equal radius (see Methods). In principle, mk should be derivable
from basic geometry, as it depends only on general and
unchanging properties of physical space. We estimated mk

empirically by computing the average distances between the
centers of adjacent intersection regions for 30 randomly-generated
sets of place fields covering the environment, and normalized the
index by fixing the largest value m1 = 1 (see Methods). We found
that for kv Ncells

p2 , the index is well approximated by the formula

mk&1{p
ffiffiffiffiffiffiffiffi
k{1
Ncells

q
, where Ncells is the number of place cells active in

the environment (see Figure S2). We assume such an index can be
‘‘hard-wired’’ in the brain, as it has no information about any
particular arrangement of place fields or any particular environ-
ment. Although we estimated mk assuming all place fields have
identical size, we use exactly the same formula for mk in every
reconstruction, regardless of the distribution of place field sizes we
consider.

The dissimilarity index can be used to assign weights to each
edge in the graph. A path is a sequence of edges connecting two
vertices (cell groups) in the graph; the length of a particular path is
given by summing the weights along its edges. The distance
between any two cell groups in the graph can then be defined as
the length of a shortest path between those points (Figure 3D; see
also Methods). In this manner one obtains a natural metric on cell
groups. We call this graph, with cell groups as its vertices and
edges between neighbors, together with the metric, the internal
representation of the external space.

Internal Representation Accurately Reflects External
Geometry

In order to test how well the internal representation conforms to
the geometry of the external space, we used simulated population
spiking activity from a two-dimensional square box environment
(see Methods) with differing numbers of place cells. For each
number of place cells covering the environment, we randomly
generated data sets for 60 trials, each trial having different place
fields of radii chosen uniformly at random from the interval [0.1
L,0.125 L], with randomly-chosen centers. The place field sizes
were chosen to conform to the 20–25 cm range of average
diameters typically observed for place cells in dorsal hippocampus
for a rat exploring an open field environment of scale L,1 m
[41,42]. For each simulated data set, we constructed an internal
representation as outlined above.

To assess the accuracy of the internal representations, we first
computed pairwise distances between points on a fine grid
spanning the L6L environment and compared them with the
corresponding pairwise distances of their images in the internal
representation (Figure S3). We defined the pairwise error for an
individual trial (having a fixed number of place cells) as the mean
error in pairwise distances when computed using the internal
representation (see Methods). We found that the average pairwise
error across trials had a minimum value of 0.036 L for 90 cells
(Figure 4A), or less than 1/3 the average place field radius; this
indicates that relative distances between points in the internal
representation are accurate to within a ball of approximately 1/9
the median place field area. To check robustness of this procedure
in the case of greater place field variability, we repeated this
analysis for a series of gamma-function distributions of place field
radii (Figure 4B). We found that performance decreased slowly for
distributions with increasing standard deviations up to ,0.035,
and rapidly deteriorated for distributions with standard deviations
greater than 0.05 (Figure 4C).

As a further test that the full geometry—and not just pairwise
distances—is accurately reflected in the internal representation, we
used multi-dimensional scaling (MDS) [43] to embed each graph
into a two-dimensional Euclidean space, in a way that best
preserves the relative distances between pairs of points (i.e., to best
preserve the metric on cell groups). Next, we ‘‘aligned’’ the
coordinates of the embedded internal space properly so as to best
match the particular coordinates used to represent the external
space (Figure S4; see also Methods). Points in the external space
could then be mapped into the embedded internal space by
identifying corresponding cell groups (see Methods).

Figure 3. Construction of a metric on cell groups. (A) Example
spike trains from five place cells. Each time bin (columns) represents
two theta cycles. (B) Place field intersection pattern derived from cell
groups in (A). Shaded regions correspond to cell groups inside
rectangles of the same color in (A). (C) The pattern of intersections
can be represented by a graph, with vertices (black squares) for each
cell group, and edges connecting neighbors (cell groups that differ by
one cell only). A trajectory (green) is inferred from the example data, by
‘‘connecting the dots’’ to match the sequence of cell groups in (A). (D)
Weights are assigned to edges of the graph using the dissimilarity index
mk, where k is the number of common cells between neighbors. The
distance between any two vertices in the graph is obtained by
summing the weights along a shortest path (blue).
doi:10.1371/journal.pcbi.1000205.g003
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diameters typically observed for place cells in dorsal hippocampus
for a rat exploring an open field environment of scale L,1 m
[41,42]. For each simulated data set, we constructed an internal
representation as outlined above.

To assess the accuracy of the internal representations, we first
computed pairwise distances between points on a fine grid
spanning the L6L environment and compared them with the
corresponding pairwise distances of their images in the internal
representation (Figure S3). We defined the pairwise error for an
individual trial (having a fixed number of place cells) as the mean
error in pairwise distances when computed using the internal
representation (see Methods). We found that the average pairwise
error across trials had a minimum value of 0.036 L for 90 cells
(Figure 4A), or less than 1/3 the average place field radius; this
indicates that relative distances between points in the internal
representation are accurate to within a ball of approximately 1/9
the median place field area. To check robustness of this procedure
in the case of greater place field variability, we repeated this
analysis for a series of gamma-function distributions of place field
radii (Figure 4B). We found that performance decreased slowly for
distributions with increasing standard deviations up to ,0.035,
and rapidly deteriorated for distributions with standard deviations
greater than 0.05 (Figure 4C).

As a further test that the full geometry—and not just pairwise
distances—is accurately reflected in the internal representation, we
used multi-dimensional scaling (MDS) [43] to embed each graph
into a two-dimensional Euclidean space, in a way that best
preserves the relative distances between pairs of points (i.e., to best
preserve the metric on cell groups). Next, we ‘‘aligned’’ the
coordinates of the embedded internal space properly so as to best
match the particular coordinates used to represent the external
space (Figure S4; see also Methods). Points in the external space
could then be mapped into the embedded internal space by
identifying corresponding cell groups (see Methods).

Figure 3. Construction of a metric on cell groups. (A) Example
spike trains from five place cells. Each time bin (columns) represents
two theta cycles. (B) Place field intersection pattern derived from cell
groups in (A). Shaded regions correspond to cell groups inside
rectangles of the same color in (A). (C) The pattern of intersections
can be represented by a graph, with vertices (black squares) for each
cell group, and edges connecting neighbors (cell groups that differ by
one cell only). A trajectory (green) is inferred from the example data, by
‘‘connecting the dots’’ to match the sequence of cell groups in (A). (D)
Weights are assigned to edges of the graph using the dissimilarity index
mk, where k is the number of common cells between neighbors. The
distance between any two vertices in the graph is obtained by
summing the weights along a shortest path (blue).
doi:10.1371/journal.pcbi.1000205.g003
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An Internal Representation of Space Can Be Built from
Cell Groups

A given cell group becomes active when the animal crosses a
specific location in space, given by the intersection of the
corresponding place fields. It is thus natural that, from the brain’s
point of view, a location in space is itself defined by a cell group
(Figure 3A and 3B). The collection of all activated cell groups thus
yields a collection of points, which can be thought of as ‘‘building
blocks’’ for an internal, discretized representation of space. A set of
unrelated points, however, does not constitute a space, one must
know the relationships between points (which pairs are close, and
which are far away). Fortunately, there is a natural way to
determine when two cell groups are ‘‘close’’ to each other, based
on the number of place cells they have in common.

We say that two cell groups are neighbors if they differ by just one
place cell. By joining neighboring points with edges, one obtains a
graph (Figure 3C) that is constructed purely from cell groups,
without any explicit knowledge of place fields. In general,
neighboring cell groups with a very high percentage of overlapping
cells will represent points that are closer in space than neighbors
with small overlap. We define a dissimilarity index mk on neighboring
cell groups as the average relative distance between the centers of
adjacent regions with overlap degree k, assuming place fields of
equal radius (see Methods). In principle, mk should be derivable
from basic geometry, as it depends only on general and
unchanging properties of physical space. We estimated mk

empirically by computing the average distances between the
centers of adjacent intersection regions for 30 randomly-generated
sets of place fields covering the environment, and normalized the
index by fixing the largest value m1 = 1 (see Methods). We found
that for kv Ncells

p2 , the index is well approximated by the formula

mk&1{p
ffiffiffiffiffiffiffiffi
k{1
Ncells

q
, where Ncells is the number of place cells active in

the environment (see Figure S2). We assume such an index can be
‘‘hard-wired’’ in the brain, as it has no information about any
particular arrangement of place fields or any particular environ-
ment. Although we estimated mk assuming all place fields have
identical size, we use exactly the same formula for mk in every
reconstruction, regardless of the distribution of place field sizes we
consider.

The dissimilarity index can be used to assign weights to each
edge in the graph. A path is a sequence of edges connecting two
vertices (cell groups) in the graph; the length of a particular path is
given by summing the weights along its edges. The distance
between any two cell groups in the graph can then be defined as
the length of a shortest path between those points (Figure 3D; see
also Methods). In this manner one obtains a natural metric on cell
groups. We call this graph, with cell groups as its vertices and
edges between neighbors, together with the metric, the internal
representation of the external space.

Internal Representation Accurately Reflects External
Geometry

In order to test how well the internal representation conforms to
the geometry of the external space, we used simulated population
spiking activity from a two-dimensional square box environment
(see Methods) with differing numbers of place cells. For each
number of place cells covering the environment, we randomly
generated data sets for 60 trials, each trial having different place
fields of radii chosen uniformly at random from the interval [0.1
L,0.125 L], with randomly-chosen centers. The place field sizes
were chosen to conform to the 20–25 cm range of average
diameters typically observed for place cells in dorsal hippocampus
for a rat exploring an open field environment of scale L,1 m
[41,42]. For each simulated data set, we constructed an internal
representation as outlined above.

To assess the accuracy of the internal representations, we first
computed pairwise distances between points on a fine grid
spanning the L6L environment and compared them with the
corresponding pairwise distances of their images in the internal
representation (Figure S3). We defined the pairwise error for an
individual trial (having a fixed number of place cells) as the mean
error in pairwise distances when computed using the internal
representation (see Methods). We found that the average pairwise
error across trials had a minimum value of 0.036 L for 90 cells
(Figure 4A), or less than 1/3 the average place field radius; this
indicates that relative distances between points in the internal
representation are accurate to within a ball of approximately 1/9
the median place field area. To check robustness of this procedure
in the case of greater place field variability, we repeated this
analysis for a series of gamma-function distributions of place field
radii (Figure 4B). We found that performance decreased slowly for
distributions with increasing standard deviations up to ,0.035,
and rapidly deteriorated for distributions with standard deviations
greater than 0.05 (Figure 4C).

As a further test that the full geometry—and not just pairwise
distances—is accurately reflected in the internal representation, we
used multi-dimensional scaling (MDS) [43] to embed each graph
into a two-dimensional Euclidean space, in a way that best
preserves the relative distances between pairs of points (i.e., to best
preserve the metric on cell groups). Next, we ‘‘aligned’’ the
coordinates of the embedded internal space properly so as to best
match the particular coordinates used to represent the external
space (Figure S4; see also Methods). Points in the external space
could then be mapped into the embedded internal space by
identifying corresponding cell groups (see Methods).

Figure 3. Construction of a metric on cell groups. (A) Example
spike trains from five place cells. Each time bin (columns) represents
two theta cycles. (B) Place field intersection pattern derived from cell
groups in (A). Shaded regions correspond to cell groups inside
rectangles of the same color in (A). (C) The pattern of intersections
can be represented by a graph, with vertices (black squares) for each
cell group, and edges connecting neighbors (cell groups that differ by
one cell only). A trajectory (green) is inferred from the example data, by
‘‘connecting the dots’’ to match the sequence of cell groups in (A). (D)
Weights are assigned to edges of the graph using the dissimilarity index
mk, where k is the number of common cells between neighbors. The
distance between any two vertices in the graph is obtained by
summing the weights along a shortest path (blue).
doi:10.1371/journal.pcbi.1000205.g003
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(A)	Example	spike	trains	from	five	place	cells.	
Each	time	bin	(columns)	represents	two	theta	

cycles

(B)	Place	field	intersection	pattern	derived	from	
cell	groups	in	(A).	Shaded	regions	correspond	to	
cell	groups	inside	rectangles	of	the	same	color	

in	(A)

(C)	The	pattern	of	intersections	represented	by	a	graph,	with	vertices	(n)	for	each	cell	
group,	and	edges	connecting	neighbors.	A	trajectory is	inferred	from	the	example	data,	by	

‘‘connecting	the	dots’’	to	match	the	sequence	of	cell	groups	in	(A)



(4)	An	Internal	Representation	of	Space	Can	Be	Built	
from	Cell	Groups

- Define	a	dissimilarity	index	μk on	neighboring	cell	groups	
as	the	average	relative	distance	between	the	centers	of	
adjacent	regions	with	overlap	degree	k,	assuming	place	
fields	of	equal	radius

- μk should	be	derivable	from	basic	geometry,	as	it	
depends	only	on	general	and	unchanging	properties	of	
physical	space

- The	distance	between	any	two	cell	groups	(two	vertices)	
in	the	graph	can	then	be	defined	as	the	length	of	a	
shortest	path	between	those	points.	

à Natural	metric	on	cell	groups.	
à Internal	representation	of	the	external	space.

An Internal Representation of Space Can Be Built from
Cell Groups

A given cell group becomes active when the animal crosses a
specific location in space, given by the intersection of the
corresponding place fields. It is thus natural that, from the brain’s
point of view, a location in space is itself defined by a cell group
(Figure 3A and 3B). The collection of all activated cell groups thus
yields a collection of points, which can be thought of as ‘‘building
blocks’’ for an internal, discretized representation of space. A set of
unrelated points, however, does not constitute a space, one must
know the relationships between points (which pairs are close, and
which are far away). Fortunately, there is a natural way to
determine when two cell groups are ‘‘close’’ to each other, based
on the number of place cells they have in common.

We say that two cell groups are neighbors if they differ by just one
place cell. By joining neighboring points with edges, one obtains a
graph (Figure 3C) that is constructed purely from cell groups,
without any explicit knowledge of place fields. In general,
neighboring cell groups with a very high percentage of overlapping
cells will represent points that are closer in space than neighbors
with small overlap. We define a dissimilarity index mk on neighboring
cell groups as the average relative distance between the centers of
adjacent regions with overlap degree k, assuming place fields of
equal radius (see Methods). In principle, mk should be derivable
from basic geometry, as it depends only on general and
unchanging properties of physical space. We estimated mk

empirically by computing the average distances between the
centers of adjacent intersection regions for 30 randomly-generated
sets of place fields covering the environment, and normalized the
index by fixing the largest value m1 = 1 (see Methods). We found
that for kv Ncells

p2 , the index is well approximated by the formula

mk&1{p
ffiffiffiffiffiffiffiffi
k{1
Ncells

q
, where Ncells is the number of place cells active in

the environment (see Figure S2). We assume such an index can be
‘‘hard-wired’’ in the brain, as it has no information about any
particular arrangement of place fields or any particular environ-
ment. Although we estimated mk assuming all place fields have
identical size, we use exactly the same formula for mk in every
reconstruction, regardless of the distribution of place field sizes we
consider.

The dissimilarity index can be used to assign weights to each
edge in the graph. A path is a sequence of edges connecting two
vertices (cell groups) in the graph; the length of a particular path is
given by summing the weights along its edges. The distance
between any two cell groups in the graph can then be defined as
the length of a shortest path between those points (Figure 3D; see
also Methods). In this manner one obtains a natural metric on cell
groups. We call this graph, with cell groups as its vertices and
edges between neighbors, together with the metric, the internal
representation of the external space.

Internal Representation Accurately Reflects External
Geometry

In order to test how well the internal representation conforms to
the geometry of the external space, we used simulated population
spiking activity from a two-dimensional square box environment
(see Methods) with differing numbers of place cells. For each
number of place cells covering the environment, we randomly
generated data sets for 60 trials, each trial having different place
fields of radii chosen uniformly at random from the interval [0.1
L,0.125 L], with randomly-chosen centers. The place field sizes
were chosen to conform to the 20–25 cm range of average
diameters typically observed for place cells in dorsal hippocampus
for a rat exploring an open field environment of scale L,1 m
[41,42]. For each simulated data set, we constructed an internal
representation as outlined above.

To assess the accuracy of the internal representations, we first
computed pairwise distances between points on a fine grid
spanning the L6L environment and compared them with the
corresponding pairwise distances of their images in the internal
representation (Figure S3). We defined the pairwise error for an
individual trial (having a fixed number of place cells) as the mean
error in pairwise distances when computed using the internal
representation (see Methods). We found that the average pairwise
error across trials had a minimum value of 0.036 L for 90 cells
(Figure 4A), or less than 1/3 the average place field radius; this
indicates that relative distances between points in the internal
representation are accurate to within a ball of approximately 1/9
the median place field area. To check robustness of this procedure
in the case of greater place field variability, we repeated this
analysis for a series of gamma-function distributions of place field
radii (Figure 4B). We found that performance decreased slowly for
distributions with increasing standard deviations up to ,0.035,
and rapidly deteriorated for distributions with standard deviations
greater than 0.05 (Figure 4C).

As a further test that the full geometry—and not just pairwise
distances—is accurately reflected in the internal representation, we
used multi-dimensional scaling (MDS) [43] to embed each graph
into a two-dimensional Euclidean space, in a way that best
preserves the relative distances between pairs of points (i.e., to best
preserve the metric on cell groups). Next, we ‘‘aligned’’ the
coordinates of the embedded internal space properly so as to best
match the particular coordinates used to represent the external
space (Figure S4; see also Methods). Points in the external space
could then be mapped into the embedded internal space by
identifying corresponding cell groups (see Methods).

Figure 3. Construction of a metric on cell groups. (A) Example
spike trains from five place cells. Each time bin (columns) represents
two theta cycles. (B) Place field intersection pattern derived from cell
groups in (A). Shaded regions correspond to cell groups inside
rectangles of the same color in (A). (C) The pattern of intersections
can be represented by a graph, with vertices (black squares) for each
cell group, and edges connecting neighbors (cell groups that differ by
one cell only). A trajectory (green) is inferred from the example data, by
‘‘connecting the dots’’ to match the sequence of cell groups in (A). (D)
Weights are assigned to edges of the graph using the dissimilarity index
mk, where k is the number of common cells between neighbors. The
distance between any two vertices in the graph is obtained by
summing the weights along a shortest path (blue).
doi:10.1371/journal.pcbi.1000205.g003
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Conclusion

• Using	standard	tools	from	algebraic	topology	(persistent	homology)	
and	graph	theory,	one	could:
– Extract	global	topological	features	of	the	environment
– Reconstruct	an	accurate	geometric	representation	of	the	

physical	space



Conclusion

• Using	standard	tools	from	algebraic	topology	(persistent	homology)	
and	graph	theory,	one	could:
– Extract	global	topological	features	of	the	environment
– Reconstruct	an	accurate	geometric	representation	of	the	

physical	space

• Ideas

– Different	metrics	for	different	simplicial complexes	relative	to	
multiple	stimulus	fields	(visual,	auditory,	etc.)	&	computing	their	
homology	groups?

– Homology	group	of	MICS	(which	is	a	simplicial complex)
– (AI)	agent	that	can	reconstruct	the	world	from	basic	stimulus?





(2)	Global	topological	features

• Holes are	examples	of	(non-metric)	topological	features,	because	they	are	
preserved	under	continuous	deformations	of	the	space

• Two	topologically	equivalent	(homeomorphic)	environments	can	be	
continuously	deformed	into	the	other,	and	vice	versa.

• Homology	groups are	topological	invariants that	can	be	used	to	distinguish	
topologically	inequivalent spaces.	In	particular,	the	dimension	of	the	first	
homology	group	H1	counts	the	number	of	holes.	Higher	order	homology	
groups	(H2,	H3,	…)	count	higher- dimensional	‘‘holes,’’	and	thus	place	
constraints	on	the	minimum	dimensionality	of	the	space;	they	are	all	
expected	to	vanish	for	flat,	two-dimensional	environments.	

à Homologies	detect	holes




