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Introduction

 Animportant task of the brain is to represent the outside world

— How does it do it when it can only rely on neural responses ?

— What can be learned about a space of stimuli using only the
action potentials (spikes) of cells ?



Stimulus Construction

* Three steps:

1. Characterizing the space of (relevant) stimuli

2. Constructing functions relating stimuli to neuronal
responses

3. Use the functions, together with new neuronal activity, to
decode new stimuli

Example: In the case of hippocampal place cells, the space of
stimuli could be the animal current spatial environment; for
every place cell one computes a place field, i.e., a function
that assigns a firing rate to each position in space.



Main Results Of the Paper

* Using hippocampal place cells as a model system, one can
1. Extract global topological features of the environment and

2. Reconstruct an accurate geometric representation of
physical space, up to an overall scale factor, that can be
used to track the animal’s position

* How? Using standard tools from algebraic topology (persistent
homology) and graph theory

- Neither place fields, nor precise spike timing, nor any
prior independent measurements of position are needed



Persistent Homology
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Persistent Homology

 What topological features does the following data
exhibit?

But: Discrete points have trivial topologies!



Persistent Homology

* Persistent homology is an algebraic method for
discerning topological features of data

Components, holes, voids, graph structures Set of discrete points with a metric

* A method for computing topological features of a
space at different spatial resolutions



Persistent Homology

To find the persistent homology of a space, the space must first be
represented as a simplicial complex

— A simplicial complex is built from points, lines segments, triangular faces, and
their n-dimensional counterparts

-\ YV A

O-simplex 1-simplex 2-simplex 3-simplex example of a
(solid) simplicial complex

Homology counts components, holes, voids, etc.

: void (contains faces

hole but empty interior)



Persistent Homology

e Start by connecting the nearby points

1. Choose a distance d



» Start by connecting the nearby points

1. Choose a distance d




Persistent Homology

e Start by connecting the nearby points

1. Choose a distance d
2. Connect points (A,B) with distance( A,B)<d
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e Start by connecting the nearby points

1. Choose a distance d 3. Fill in complete simplices
2. Connect points (A,B) with distance( A,B)<d




Persistent Homology

e Start by connecting the nearby points

1. Choose a distance d 3. Fill in complete simplices
2. Connect points (A,B) with distance( A,B)<d 4. Homology detects the holes

How do we choose d?




Persistent Homology

 Ifdistoosmall, we detect noise




Persistent Homology

e Solution: consider all distances, until finding the appropriate one

* Each hole appears at a particular value of d and disappears at

another value




(1) Cell Groups Reveal Place Field Intersection
Information
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(A) Sample rasters for the population activity of five
place cells in two different Environments. Cell groups
are obtained by identifying subsets of cells that co-fire
within a coarse time window
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(A) Sample rasters for the population activity of five
place cells in two different Environments. Cell groups
are obtained by identifying subsets of cells that co-fire
within a coarse time window

(B) Two examples of five-cell configurations depicting
collections of cell groups obtained from the sample
rasters in (A). An edge represents a cell group with
two cells and a shaded triangle indicates a cell group
with three cells (A)
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(A) Sample rasters for the population activity of five
place cells in two different Environments. Cell groups
are obtained by identifying subsets of cells that co-fire
within a coarse time window

(B) Two examples of five-cell configurations depicting
collections of cell groups obtained from the sample
rasters in (A). An edge represents a cell group with
two cells and a shaded triangle indicates a cell group
with three cells (A)

(C) Cells that co-fire have overlapping place fields. Each
cell group in (A), (B) corresponds to a particular
intersection of place fields, denoted with matching
color. The place field intersection pattern fully
determines the topology of a space covered by convex
place fields



(2) Global topological features

e Often times an animal’s physical space has “holes” —i.e., regions in
the interior of the environment where the animal is unable to go.

 Example: a rat may be confined to a platform with one or more
holes in the middle; similarly, there may be large objects inside the
environment providing obstructions to the animal’s path.

E Hole = Region inaccessible to the animal




(3) Topological Features Can Be Extracted from Cell
Groups

e Computing the homology groups of the environment

* Steps:
1. Population of place cells
2. Collection of cell groups
3. Intersection information
4. Homology groups



(3) Topological Features Can Be Extracted from Cell
Groups

Random-walk trajectories, 5 x 2-D flat
environments, each of side length L=1 m,
with N=0,1,...,4 holes

In each of 300 trials, each of the five
environments was covered by 70 single-
peaked place fields with varying radii (0.1-
0.15 L) and randomly-chosen centers

For each trial, the first five homology groups
(HO,...,H4) were computed

A trial was deemed to be correct if and only if
all homology groups matched the topology of
the underlying space, and incorrect if at least
one homology group did not match.
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Random-walk trajectories, 5 x 2-D flat
environments, each of side length L=1 m,
with N=0,1,...,4 holes

In each of 300 trials, each of the five
environments was covered by 70 single-
peaked place fields with varying radii (0.1-
0.15 L) and randomly-chosen centers

For each trial, the first five homology groups
(HO,...,H4) were computed

A trial was deemed to be correct if and only i
all homology groups matched the topology o
the underlying space, and incorrect if at least
one homology group did not match.

% of correct trials

101

—%— 1 holes
—%— 2 holes
—%— 3 holes
—%— 4 holes
—%— 0 holes

2 4

6 8

Noise level (%)

10



(4) An Internal Representation of Space Can Be Built
from Cell Groups
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(A) Example spike trains from five place cells. (B) Place field intersection pattern derived from
Each time bin (columns) represents two theta cell groups in (A). Shaded regions correspond to
cell groups inside rectangles of the same color

in (A)

cycles

(C) The pattern of intersections represented by a graph, with vertices (B) for each cell
group, and edges connecting neighbors. A trajectory is inferred from the example data, by

“‘connecting the dots” to match the sequence of cell groups in (A)



(4) An Internal Representation of Space Can Be Built

from Cell Groups

Define a dissimilarity index pk on neighboring cell groups
as the average relative distance between the centers of
adjacent regions with overlap degree k, assuming place
fields of equal radius

depends only on general and unchanging properties of  #
physical space

ik should be derivable from basic geometry, as it la 4

d(p,, p_) _/1+4,u_

The distance between any two cell groups (two vertices)
in the graph can then be defined as the length of a (D)
shortest path between those points.

- Natural metric on cell groups.
- Internal representation of the external space.



Conclusion

Using standard tools from algebraic topology (persistent homology)
and graph theory, one could:

— Extract global topological features of the environment

— Reconstruct an accurate geometric representation of the
physical space



Conclusion

e Using standard tools from algebraic topology (persistent homology)
and graph theory, one could:

— Extract global topological features of the environment

— Reconstruct an accurate geometric representation of the
physical space

stimuli brain MICS qualia
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— Different metrics for different simplicial complexes relative to
multiple stimulus fields (visual, auditory, etc.) & computing their
homology groups?

e |deas

— Homology group of MICS (which is a simplicial complex)
— (Al) agent that can reconstruct the world from basic stimulus?






(2) Global topological features

* Holes are examples of (non-metric) topological features, because they are
preserved under continuous deformations of the space

* Two topologically equivalent (homeomorphic) environments can be
continuously deformed into the other, and vice versa.

* Homology groups are topological invariants that can be used to distinguish
topologically inequivalent spaces. In particular, the dimension of the first
homology group H1 counts the number of holes. Higher order homology
groups (H2, H3, ...) count higher- dimensional “holes,” and thus place
constraints on the minimum dimensionality of the space; they are all
expected to vanish for flat, two-dimensional environments.

- Homologies detect holes



Filtration:

Z2a%0

i homology with coefficients in a field k:
H;(Cy) > H;(Cy) > H;(C3)

Persistent homology module: graded k[x]-module

M = Hi(C)) @ Hi(C,) @ Hi(Cs)



