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Introduction

Active Inference, free energy minimization

Can it guide the behavior and evolution of an (artificial) agent?

Is it a well-principled agent theory?

General problem of decision making or planning
 When there is uncertainty about the outcomes, states, and observations
* When the environment is dynamic
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Actions

Goals/Values

* Movement
e Speech
* Facial expressions

Prior Knowledge
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Past Experiences

Deliver food
Rescue people
Score goals
Explore

Important feature
Categories of objects
What a sensor tells us

Vision
Sound
Speech
Gesture

Effect of Steering
Slipperiness
How people move
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Prerequisites

* Decision making in situations where outcomes are partly random and subject to
uncertainty

* Markov Process

* is a stochastic process that satisfies the Markov property (memorylessness), where
one can make predictions for the future of the process based solely on its present
state

P(Xn — xnlxn—l = Xpn-1,Xn—2 = Xp_2, ..., X = xo) — P(Xn = Xp|Xn-1 = xn—l)

() () () = oy



Prerequisites

MDP
(5,A,P,R) -

Agent

REL

Set of states S = {OK, KO}

Set of Actions A = {NOOP,AC,REL}
Reward function R, (s,s'): AXSXS - R
State transitions P(s’| a, s)

NOOP 1.0
0.02
REL KO
1.0
AC AC AC

0.02

0.98 1.0

NOOP

state
8,

', I Agent

Environment

-}

action
a,



Prerequisites

| =
MDP Set of states S = {OK, KO} o t_
(S,A P,R) | SetofActions 4= {NOOP,AC,REL} - B G
o Reward function R, (s,s"): AXSXS —» R T _
State transitions P(s’| a, s) i Environment =

Question: What will be the best decision strategy in
NOOP the long term: If the agent is KO, are we better off

NOOP 1.0 restarting or relocating?
0.02
REL
1.0
REL KO
1.0
AC AC AC

0.02
0.98 1.0



Prerequisites

MDP
(5,A,P,R) -

REL

Set of states S = {OK, KO}

Set of Actions A = {NOOP,AC,REL}
Reward function R, (s,s'): AXSXS - R
State transitions P(s’| a, s)

NOOP
NOOP 1.0
0.02
REL ©
1.0
AC ;ﬁ; AC
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', I Agent

state reward
Y

s | Environment
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Question: What will be the best decision strategy in
the long term: If the agent is KO, are we better off

restarting or relocating?

Solution: Optimal policy m:S - A

.. . (0'e] t
7 maximizes cumulative reward Y.¢20 ¥Ry, (¢, St41),
with a; = m(s;), using a recursive algorithm:

n(s):= argmax, Y., P(s'|a,s )[R,(s,s") + yV(s")]
V(s):= X P(s"|(s), s )[Rp(s)(s,s") + ¥V (s")]



Prerequisites

_ _’I Agent
MDP Set of states S = {OK, KO} o .
(5,4,P,R) | SetofActions A ={NOOP,AC,REL} e
S Reward function R, (s, s"): AXSxS - R el .
State transitions P(s’| a, s) ﬁ’- Environment =

decision strategy in
are we better off

o We have to know the agent states!

0.02

Solution: Optimal policy m:S - A

.. . 00 t
7 maximizes cumulative reward Y.¢20 ¥Ry, (¢, St41),
with a; = m(s;), using a recursive algorithm

AC

0.02 1.0 n(s):= argmax, Y., P(s'|a,s )[R,(s,s") + yV(s")]

0.98 V(s):= Yo P(s'|7(5), S )[Ru(s) (5, ") + ¥V (s)]
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Prerequisites

Do we have control over

Observability of the states

Full Observability

Partial Observability

the state transitions?

No Actions Markov Process HMM
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Active Inference



Real world process that
generate observations

Sensory observations generated by P are observed by the
agent while the agent is acting on the world to change P




Real world process that
generate observations

P describes transitions among states in the world that
generate observed outcomes. These states are referred to
as hidden because they cannot be observed directly. Their
transitions depend on action, which depends on posterior
beliefs about the next state. These beliefs are formed using
a generative model of how observations are generated.

M describes what the agent believes about the
world, where beliefs about hidden states and
policies are encoded by expectations.




Real world process that
generate observations

Generative process R(0, §, 1i,n) that generates probabilistic

outcomes 0 € O from (hidden) states s € S and actionsa € Y

P describes transitions among states in the world that
generate observed outcomes. These states are referred to
as hidden because they cannot be observed directly. Their
transitions depend on action, which depends on posterior
beliefs about the next state. These beliefs are formed using
a generative model of how observations are generated.

The generative model P(0, §, 1, 1) can be parametrized
in a general way usingn = {a, b, ¢, d, §} over outcomes,
states, and policies™ € T where € {0, ..., K} returns a
sequence of actions u; = m(t)
P(5,3,1,1) = P(m)P(n) [1i=1 Pols)P(s¢lsi—1, )

P(o¢|st) = Cat(A)

P(s¢lse—1,m) = Cat (B(u = n(t)))

P(s1lso) = Cat(D)

P(m) = 0(—)/. G(n))

P(A) = Dir(a)

P(B) = Dir(b)

P(D) = Dir(d)

P(y) =T(1,B)
An approximate posterior over hidden states and
parameters x = (8,1, n) is expressed as

Q(x) = Q(s1]m) ... Q(s7|m)Q (M) Q(A)Q(B)Q(D)Q(¥)

M describes what the agent believes about the
world, where beliefs about hidden states and
policies are encoded by expectations.




Active Inference

(O,P,Q,R,S,T,Y)

* Finite set of outcomes, O

* Generative model P (0, §, ii)with parameters 11 over outcomes, states, and policies
m € T where m € {0, ..., K} returns a sequence of actions u; = m(t)

 An approximate posterior Q(5,m,1) = Q(sgl|m) ... Q(sr|m) Q () Q(n)over states,
policies and parameters with expectations (s§, ..., s§ , T, 1)

* Generative process R(0, S, 1) that generates probabilistic outcomes o0 € O from
hidden states s € S and actionsa € Y

* Finite set S of hidden states
* Finite set T of time-sensitive policies
* Finite set Y of control states, or actions
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Inference process

Generative model P(0, 8, d, 7i|lm) connecting observations to hidden states
—> * Predictive model over observations
* Encodes optimal policies in term of prior beliefs about control states

—> Posterior beliefs Q (3, i|u) about those states, parametrized by expectations

Agent
World
Distribution R(0, S, @) over observations
 True states S control environmental responses but are never
— P

observed directly. Instead, the agent infer hidden states based on
observations



Inference process

Action Perception

Inference about hidden states

Agent
a; € A 0 € (¢)
< World >
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Action Perception

Inference about hidden states

Agent

a. € A 0; € ()

World
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Gibbs energy (expected under the approximate prior) - Entropy of the approximate prior

The reason why we call it free energy!
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>

/Find which states are most likely by
| nfe rence p roOcess e optimizing expectation with regard

to the free energy of observations

pe = argmin, F(0, u)

& )
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Minimizing free energy is the same as maximizing the expected log likelihood of observations or
accuracy, while minimizing the divergence between the approximate posterior and prior beliefs
about hidden variables. This divergence is known as model complexity.

~

Complexity - Accuracy

F(0,1) = Dg [QGS, @i|w)|IP(S,Ti[6)] + Eq[—InP(0]5, )]

-

-

\ Expected entropy of observations /
~
Gibbs energy (expected under the approximate prior) - Entropy of the approximate prior
The reason why we call it free energy!
F(o,u) =Eo[—-InP(0,5 |lm)] — H(P(S, i|w))
J




Free energy is an upper bound on surprise, because Dg;(.|].) = 0
(Gibbs inequality)
F(6,1) = D, [QG, @lw)|P (S, @|5)] — InP(3|m)

Posterior (predictive) distribution over hidden states.

Minimizing free energy corresponds to minimizing divergence

/(Divergence + Surprise) or (Relative Entropy - log evidence)\/pind which states are most likely by

Prior (preferred) distribution over future outcomes.

\between the approximate and true posterior. /

o

optimizing expectation with regard
to the free energy of observations

)

<

Complexity - Accuracy

about hidden variables. This divergence is known as model complexity.

Minimizing free energy is the same as maximizing the expected log likelihood of observations or
accuracy, while minimizing the divergence between the approximate posterior and prior beliefs

F(0,1) = Dg [QGS, @i|w)|IP(S,Ti[6)] + Eq[—InP(0]5, )]

~

\ Expected entropy of observations /
4 )
Gibbs energy (expected under the approximate prior) - Entropy of the approximate prior
The reason why we call it free energy!
F(o,u) =Eo[—-InP(0,5 |lm)] — H(P(S, i|w))
\ J
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fFind which states are most likely by
| ﬂfe Frence p rOcCess 6 optimizing expectation with regard

to the free energy of observations

pe = argmin, F(0, u)
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Action Perception

Inference about hidden states

Agent

a. € A 0; € ()

World



a . : : A /Find which states are most likely by\
Optimize posterior beliefs

and sample action M optimizing expectation with regard
P to the free energy of observations
_ P(a; = ur) = Q(ue|ue) P

pe = argmin, F(0, u)

&

Action Perception

Inference about hidden states

Agent

World

Pick the new action from Generate new observations using
the posterior probability the generative process




o

a . : : A /Find which states are most likely by
Optimize posterior beliefs

: optimizing expectation with regard
and sample action :
to the free energy of observations

P(a; = uy) = Q(ue|ue)

/ pe = argmin, F(0, u)

/

When expressed using a policy
(8%, %) = argmin F(0, §, 1)
P(a; = ut) = Q(ue|™)
the negative free energy of the approximate posterior predictive density becomes
Q. (m) = ]EQ(OT,ST|T[) [In P(or, s;|m)] + H(Q(s¢|m))

A policy is a priori more likely if it has high quality or if its expected free energy is small.

— Heuristically, the agent believes they will pursue policies that minimize the expected free
energy of outcomes and implicitly minimize their surprise about those outcomes. y

\_
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Optimize posterior beliefs
and sample action

P(a; = uy) = Q(ue|ue)

T

)

: F

o

ind which states are most likely by
optimizing expectation with regard
to the free energy of observations

pe = argmin, F(0, u)

/

g

directed behavior.

Knew observations.

Extrinsic value

nder the generative model of the future, the quality of a policy, Q.(7r) , can be rewritten as

Q: () = Eg(o,im)In P(o-|m)] + Eq o, jm) [Pkr(Q(slor, ) ||Q (s |))]
Epistemic value

Extrinsic value is the utility C(o,|m) = In P(0,;|m) of an outcome expected under the
posterior predictive distribution. It encodes the preferred outcomes that give the goal-

Epistemic (intrinsic) value is the expected information gain under predicted outcomes. It
reports the reduction in uncertainty about hidden states afforded by observations. The
information gain is smallest when the posterior predictive distribution is not informed by

~




Sensations - predictions

Prediction Error

Change sensations Change predictions

Action Perception



Simulation

» Simulating foraging in a T-maze using a hierarchical generative model?



Simulation

» Simulating foraging in a T-maze using a hierarchical generative model?
* The agent starts in the center, where either the right or left arms are baited with a reward.

* The lower arm contains a discriminative cue that tells the agent whether the reward is in the
upper right or left arm.

* The agent can make only two moves.
* The agent cannot leave the baited arms after they are entered.

* The optimal behavior is to first go to the lower arm to find where the reward is located and
then retrieve the reward at the cued location.

l Rewards l
@ o

o
o

A

Discriminative cues 1 J



Simulation

» Simulating foraging in a T-maze using a hierarchical generative model?
* Translate into a POMDP



Simulation

Control states o o
el =
¢ [6)
Location
Rewards
| [ j
Hidden states . = | ® >
s=5Qs.€S @ \ X Discriminative cues
1\%o¢ g o ‘7
Context
Observations (o] O
o 2 ©® 0 @
5] Stimulus
Outcomes o ° o ©
@)
o o

InP(o;) =U =[0,c,—c,c,—c,0,0]”



Simulation

Performance Q. (%) = Eg(on s, [In P(0c]sc) — In Q(0]) + InP(og|m)]
N——
Expected utility
80 \ KL ;(:ntrol P
l | RL Expected f?rree energy
. DA
X 60
()
..é _
B 40
(&)
O
-
(7p]
20 |
0 [ ||l L L] ||l L
0 0.2 0.4 0.6 0.8 1

Prior preference



Another usage

* A simpler usage of active inference as a belief update mechanism
* Belief update by free energy minimization
e Case of a bounded rational agent



* Free energy functional with a rationality index

Complexity Accuracy
1 h
AFIgl=— S q(hylog L7 - D gy log p(y 1)
T Latent variable T Likelihi)d odel
Prior Log likelihood

Rationality Index
(Bound)

* Ortega et al. "Thermodynamics as a theory of decision-making with information-processing costs" (2013)
* Friston et al. "The anatomy of choice: active inference and agency" (2013)
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* Testing with 1-D Gaussian model

* Observed data N N 20 To
2 2L’
p(Dlu,t)y=—-e * ~N(u,t)
27

* Priors

A T ‘M( ~up)?
pulm)="te T~ Ny, Ay T)
b,a,
p(T) = F(a()ab()) =

an—1 —-b,T
x e ™ ~1(a,,b,)
I(a,) .




. . ) Rationality Index:
* Testing with 1-D Gaussian model l Low a: large constraint

° Free energy func‘“onal ngh a: low constraint

1 q(u,t)
. - 1
Flq(u,7)] f q(u,T)Inp(D1u,7)+ af q(u,T)In p(ulT)p(T)

* Example

a=0.1 a=1.0 a=400

5 Likelihood Likelihood .

0.8

Likelihood

0.7
0.6
05 Prior
0.4
0.3
0.2

0.1




* Testing with 1-D (
* Free energy fi

Flq(u,7)]

* Example

0.9

/ 400

350
300—5
250—5
- 200 ty Index:
] rge constraint
150 .
] DW constraint
100
o] q(U,T)
\\ 0 /M | T)p(T)
0.1 1.0 400
a=0.1 ) a=1.0 a=400
Likelihood likelihood .. q

0.8

Likelihood

0.7
0.6
05 Prior
0.4
0.3
0.2

0.1



* Testing with 1-D (

e cnerm

e Random action

* Helplessness
* Anhedonia

/ 400

™

ty Index:
rge constraint
DW constraint

-

o

Risk seeking
Impulsivity

lllusory pattern perception

/

v

a=0.1
Likelihood

a=1.0

Likelihood

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

a=400

Likelihood

Prior



400 £

* Testing wit

e Randc

Agent with risk attitudes

U(x) U(x)
AN /

* Helpl

xF-——-——-————-====-

XpF—-——————————

A\ 4

X CE X’
/{ern perception

e Anhedonia

raint
aint

/

a=0.1 ) a=1.0 a=400
Likelihood Likelihood .

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Likelihood

Prior



Calculation of the FE functional

_ 1 q(u,7)
Fla 0] =~ | aw MO0 + 2| atw ot {pmn)p(r)}
: [ awomp

- | aw o r)+1f (wD)ln (>+1j (17)1n (r)—lf (17 Inp(ulr) -~
qi, |13 o ql, qu . ql, q . qi, p .

Term 1 Term 2 Term 3 Term 4 Term 5

Expectation of log likelihood under
Sl = f q(, ) In(Dp,7) =<In(Dlp,7) >, approximate posterior

N - 1
= - [(¥(ay) ~ Inby) ~ 2] = =L} (3% - Zyr + 4+ )
2 2 | Ay
1 Entropy of approximate posterior

Term 2 =

Ef qu,t)Inq(p) =<Inq(p) >, over the mean.

11 2n 1
:—(—ln—+—)



Calculation of the FE functional

1
Term3 = E J q(u,7)Inq(r) =<Inq(7) >q Entropy of approximate posterior over
1 the precision.
= (ay—Inby+InT(ay)+ (1-ay)yP(ay)
1 : :
A e f (i 7) Inp(ult) =< Inp(u|t) > Expectation of prior on the mean over
a ! approximate posterior.
1/N AT , 1
E( [ln AO i (]I)(aN) — In bN) 21‘[] - _(ﬂn ZMN” T By t A_)>
N
Term5 =— | q(u7)Inp(r) =< In(p(r) > Expectation of prior on precision over

approximate posterior.

Qp—\Ql'—‘

A\

Ay
oo by~ I a) + (o = 1) (o) = Inby ~ bo(z)



Questions & Comments?






Generalities
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Generalities

Compression

Structure Image

i . Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

isualistai . Classification Diagnostics
Visualistaion Reduction Elicitation Detection g

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
*
I I ac h I n e Population

Growth
Prediction

Recommender Unsupervised SUPQersed

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

Segmentation L e a r n i n g

Estimating
life expectancy

Real-time decisions

G e n e ra t ive Reinforcement

Learning

Game Al

VS.

Robot Navigation

Discriminative Models

Skill Acquisition

Learning Tasks






Generative vs. discriminative models

Discriminative models learn the (hard or soft)

\ . . . .
boundary between classes . ® PP Discriminative
\
Learn P(y|x) directly o . N ‘ ‘ ®
Q C o
distance @) ‘ \\ * Logistic regression
‘ Decision boundary ° SVM
(Hyperplane) . NN
_ o Generative
Generative models model the distribution of
individual classes O ®
.A. * Naive Bayes

Model P(x|y) and P(y), and learn P(y|x) PPN . Gaussian
indirectly: P(y|x) o« P(x|y)P(y) Discriminant Analysis



Generative vs. discriminative models

Generative
Data X Model P(x|y) and P(y), and learn P(y|x) P
Label Y indirectly: P(y|x) o P(x|y)P(y) O
‘A. * Naive Bayes
0 e Gaussian

Discriminant Analysis

Provides a probability distribution for each class in the classification
problem. This give us an idea of how the data is generated. It relies heavily on
Bayes rule to define, update the prior and derive the posterior.

1. Formulation of a generative model

Posterior likelihood  Prior * Likelihood P(ylg)
P(y|6)P(6) * Prior distribution P(8)
P(8ly) = Py ‘ 2. Observation of data: y
i 3. Update of beliefs upon observations
Ve given a prior state of knowledge:

P(6ly) o« P(y16)P(6)







Hidden states in the world Internal states of the agent
Sensations

.............................. )[ s=g(¥,a)+w, J ......

Fluctuations

Posterior expectations
5 %

{ ¥=f(W,a)+w, J [ﬂ = argmin, F(E’ﬂ)J

A

External states

Action



