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• Active	Inference,	free	energy	minimization

• Can	it	guide	the	behavior and	evolution	of	an	(artificial)	agent?
• Is	it	a	well-principled	agent	theory?

• General	problem	of	decision	making	or	planning
• When	there	is	uncertainty	about	the	outcomes,	states,	and	observations	
• When	the	environment	is	dynamic
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• Movement
• Speech
• Facial	expressions

• Vision
• Sound
• Speech
• Gesture

• Deliver	food
• Rescue	people
• Score	goals
• Explore

• Effect	of	Steering
• Slipperiness
• How	people	move

• Important	feature
• Categories	of	objects
• What	a	sensor	tells	us
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Prerequisites

• Decision	making	in	situations	where	outcomes	are	partly	random	and	subject	to	
uncertainty

• Markov	Process
• is	a	stochastic	process	that	satisfies	the	Markov	property	(memorylessness),	where	
one	can	make	predictions	for	the	future	of	the	process	based	solely	on	its	present	
state
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Set	of	states		𝑆 = 𝑂𝐾,𝐾𝑂
Set	of	Actions	 𝐴 = 𝑁𝑂𝑂𝑃, 𝐴𝐶, 𝑅𝐸𝐿
Reward	function	𝑅; 𝑠, 𝑠′ : 𝐴×𝑆×𝑆 → ℝ
State	transitions	ℙ 𝑠C|	𝑎, 𝑠

(𝑆, 𝐴, ℙ, 𝑅)

 

 

theory of Markov Decision Processes (MDPs). Formulating a given task as an MDP requires that the 
agent can observe the complete state of its environment. Unfortunately, this is not the case of natural 
agents (animals), making MDPs not suited to model natural agents. In this paper, we examine how 
Non-Markov Reinforcement Learning (NMRL) techniques can apply to modeling natural agents, and 
we investigate an alternative model called the embodied model.  

2 The Reinforcement Learning paradigm 
Sutton & Barto [1] proposed the RL formulation reported in Figure 1. The Environment rounded 
rectangle represents the real world or a simulated environment. The representation of the state st 
(equally called state or state signal by Sutton & Barto) is a data structure that represents the state of 
the environment on time t.  

 

 

Figure 1: The agent-environment interaction in reinforcement 
learning [1, Figure 3.1]. On time t, the agent receives “some 
representation [st] of the environment’s state” [1, §3.1]. The 
agent chooses an action at. The action at changes the 
environment. The agent receives a reward rt+1 from the 
resulting environment. 

 
The dynamical system made of the agent and the environment is Markov if the next state signal st+1 

and the next reward rt+1 depend only on the previous state signal st and action at. This means that the 
state signal st constitutes a sufficient representation of the environment’s state to allow the agent to 
choose the actions that lead to the reward. In this case, the environment can be represented by a 
Markov Decision Process (MDP) specified by a distribution of probability T(st+1|st , at) that gives the 
probability to obtain any particular state st+1 given st and at. The reward rt+1 can be implemented 
through a distribution of probability �(rt+1|st, at, st+1), or, more simply, a scalar function r(st, at, st+1). 

We found no arguments by RL theoreticians to justify the hypothesis that natural agents in the 
open real world can be modeled by MDPs. On the contrary, authors in psychology [e.g., 3] argue that 
perceiving the world consists of actively constructing a representation of the current situation through 
interaction, as opposed to directly receiving a representation of the world’s state. A long time ago, 
some philosophers even argued that natural beings had no access to reality “as such” (noumenal 
reality, Kant), which we may interpret, in modern terminology, as having no access to the system’s 
state, either considered internal or external to the agent. In this paper, we avoid the Markov hypothesis 
because we see no reason to believe that biological agents directly perceive their environment’s state 
(except, perhaps, within some controlled experiments, e.g., monkeys pressing levers for reward). 

3 Non-Markov Reinforcement Learning (NMRL)  
The main approach to implementing reinforcement learning in non-Markov processes is based on the 
theory of Partially Observable MDPs (POMDPs). POMDPs are MDPs in which the state is not 
observable, but another “observation” signal stochastically related to the state is available to the agent. 
Figure 2 presents a typical formalization of a POMDP adapted from Spaan’s article [2]. 

Yet, we are not satisfied with POMDPs for modeling natural agents in the real world because 
POMDPs use a Markov representation made by the designer a prior. In particular, if we don’t want to 
model natural agents as if they had access to a Markov state signal, we should not either model them 
as if they had access to a reward associated with a Markov state. The same arguments against 
modeling natural agents by MDPs (presented in Section 2) also incite us to doubt that their goal can be 
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model natural agents as if they had access to a Markov state signal, we should not either model them 
as if they had access to a reward associated with a Markov state. The same arguments against 
modeling natural agents by MDPs (presented in Section 2) also incite us to doubt that their goal can be 
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Beliefs	update
𝑏 𝑠I = ℙ(𝑠I)
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Sensory	observations	generated	by	P	are	observed	by	the	
agent	while	the	agent	is	acting	on	the	world	to	change	P

Agent’s	internal	
model	of	the	process



Real	world	process	that	
generate	observations

Generative	Process,	P Generative	Model,	M

Sensory	observations	generated	by	P	are	observed	by	the	
agent	while	the	agent	is	acting	on	the	world	to	change	P

Agent’s	internal	
model	of	the	process

M	describes	what	the	agent	believes	about	the	
world,	where	beliefs	about	hidden states	and	
policies	are	encoded	by	expectations.

P	describes	transitions	among	states	in	the	world	that	
generate observed outcomes.	These	states	are	referred	to	
as	hidden because	they	cannot	be	observed	directly.	Their	
transitions	depend	on	action,	which	depends	on	posterior
beliefs about	the	next	state.	These	beliefs	are	formed	using	
a	generative model of	how	observations	are	generated.



Real	world	process	that	
generate	observations

Generative	Process,	P Generative	Model,	M

Sensory	observations	generated	by	P	are	observed	by	the	
agent	while	the	agent	is	acting	on	the	world	to	change	P

Agent’s	internal	
model	of	the	process

M	describes	what	the	agent	believes	about	the	
world,	where	beliefs	about	hidden states	and	
policies	are	encoded	by	expectations.

P	describes	transitions	among	states	in	the	world	that	
generate observed outcomes.	These	states	are	referred	to	
as	hidden because	they	cannot	be	observed	directly.	Their	
transitions	depend	on	action,	which	depends	on	posterior
beliefs about	the	next	state.	These	beliefs	are	formed	using	
a	generative model of	how	observations	are	generated.

Generative	process	𝑅 𝑜Y, �̃�, 𝑢Y , 𝜂 that	generates	probabilistic	
outcomes	𝑜 ∈ 𝑂 from	(hidden)	states	𝑠 ∈ 𝑆	and	actions	𝑎 ∈ Υ

The	generative	model	𝑃(𝑜Y, �̃�, 𝑢Y , 𝜂) can	be	parametrized	
in	a	general	way	using	𝜂 = a, b, c, d, 𝛽 over	outcomes,	
states,	and	policies	𝜋 ∈ 𝑇 where	𝜋 ∈ {0, … , 𝐾}	returns	a	
sequence	of	actions	𝑢I = 𝜋(𝑡)
𝑃 𝑜Y, �̃�, 𝑢Y , 𝜂 = 𝑃 𝜋 𝑃 𝜂 ∏ 𝑃 𝑜I 𝑠I 𝑃 𝑠I 𝑠I&', 𝜋m

I/'
𝑃 𝑜I 𝑠I = 𝐶𝑎𝑡 𝐴
𝑃 𝑠I 𝑠I&', 𝜋 = Cat B u = 𝜋 𝑡
𝑃 𝑠' 𝑠+ = Cat 𝐷
𝑃 𝜋 = 𝜎 −𝛾. 𝐺 𝜋
𝑃 𝐴 = 𝐷𝑖𝑟(𝛼)
𝑃 𝐵 = 𝐷𝑖𝑟(𝑏)
𝑃 𝐷 = 𝐷𝑖𝑟(𝑑)
𝑃 𝛾 = Γ 1, 𝛽

An	approximate	posterior	over	hidden	states	and	
parameters	𝑥 = �̃�, 𝜋, 𝜂 	is	expressed	as
𝑄 𝑥 = 𝑄 𝑠' 𝜋 …𝑄 𝑠m 𝜋 𝑄 𝜋 𝑄 𝑨 𝑄 𝑩 𝑄 𝑫 𝑄(𝜸)



Active	Inference

• Finite	set	of	outcomes,	𝑂
• Generative	model	𝑃(𝑜Y, �̃�, 𝑢Y)with	parameters	𝜂 over	outcomes,	states,	and	policies	
𝜋 ∈ 𝑇 where 	𝜋 ∈ {0, … , 𝐾}	returns	a	sequence	of	actions	𝑢I = 𝜋(𝑡)

• An	approximate	posterior	𝑄 �̃�, 𝜋, 𝜂 = 𝑄 𝑠+ 𝜋 …𝑄 𝑠m 𝜋 𝑄(𝜋) 𝑄 𝜂 over	states,	
policies	and	parameters	with	expectations	(𝑠+V, … , 𝑠+V , 𝜋, 𝜂)

• Generative	process	𝑅 𝑜Y, �̃�, 𝑢Y that	generates	probabilistic	 outcomes	𝑜 ∈ 𝑂 from	
hidden	states	𝑠 ∈ 𝑆	and	actions	𝑎 ∈ Υ

• Finite	set	S of	hidden	states
• Finite	set	T of	time-sensitive	policies
• Finite	set	Υ	of	control	states,	or	actions

(𝑂, 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, Υ)
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Agent
World

Inference	process

Distribution	𝑅 𝑜Y, 𝒔Y, 𝑎Y over	observations
• True	states	𝒔Y control	environmental	responses	but	are	never	

observed	directly.	Instead,	the	agent	infer	hidden	states	based	on	
observations

Generative	model	𝑃 𝑜Y, 𝒔Y, 𝑎Y, 𝑢Y|𝑚 connecting	observations	to	hidden	states
• Predictive	model	over	observations
• Encodes	optimal	policies	in	term	of	prior beliefs	about	control	states

Posterior beliefs	𝑄 �̃�, 𝑢Y|𝜇 	about	those	states,	parametrized	by	expectations	
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𝑜I ∈ Ω

Action Perception
Inference	about	hidden	states

Find	which	states	are	most	likely	by	
optimizing	expectation	with	regard	
to	the	free	energy	of	observations

Agent
World

1Inference	process
𝜇I = 𝑎𝑟𝑔𝑚𝑖𝑛�𝐹(𝑜Y, 𝜇)
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World

Inference	process
Find	which	states	are	most	likely	by	
optimizing	expectation	with	regard	
to	the	free	energy	of	observations

1

𝜇I = 𝑎𝑟𝑔𝑚𝑖𝑛�𝐹(𝑜Y, 𝜇)

Gibbs	energy	(expected	under	the	approximate	prior)	- Entropy	of	the	approximate	prior
The	reason	why	we	call	it	free	energy!

𝐹 𝑜Y, 𝜇 	 = 𝔼� − ln𝑃 𝑜Y, �̃�, 𝑢Y 𝑚 − 𝐻(𝑃(�̃�, 𝑢Y|𝜇))
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Agent
World

Inference	process
Find	which	states	are	most	likely	by	
optimizing	expectation	with	regard	
to	the	free	energy	of	observations

1

𝜇I = 𝑎𝑟𝑔𝑚𝑖𝑛�𝐹(𝑜Y, 𝜇)

Complexity	- Accuracy
Minimizing	free	energy	is	the	same	as	maximizing	the	expected	log	likelihood	of	observations	or	
accuracy,	while	minimizing	the	divergence	between	the	approximate	posterior	and	prior	beliefs	
about	hidden	variables.	This	divergence	is	known	as	model	complexity.

𝐹 𝑜Y, 𝜇 	 = 𝐷��[𝑄(�̃�, 𝑢Y|𝜇)| 𝑃 �̃�, 𝑢Y 𝑜Y + 𝔼�[− ln𝑃(𝑜Y|�̃�, 𝑢Y)]
Expected	entropy	of	observations

Gibbs	energy	(expected	under	the	approximate	prior)	- Entropy	of	the	approximate	prior
The	reason	why	we	call	it	free	energy!

𝐹 𝑜Y, 𝜇 	 = 𝔼� − ln𝑃 𝑜Y, �̃�, 𝑢Y 𝑚 − 𝐻(𝑃(�̃�, 𝑢Y|𝜇))
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Inference	process
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1

𝜇I = 𝑎𝑟𝑔𝑚𝑖𝑛�𝐹(𝑜Y, 𝜇)

Complexity	- Accuracy
Minimizing	free	energy	is	the	same	as	maximizing	the	expected	log	likelihood	of	observations	or	
accuracy,	while	minimizing	the	divergence	between	the	approximate	posterior	and	prior	beliefs	
about	hidden	variables.	This	divergence	is	known	as	model	complexity.

𝐹 𝑜Y, 𝜇 	 = 𝐷��[𝑄(�̃�, 𝑢Y|𝜇)| 𝑃 �̃�, 𝑢Y 𝑜Y + 𝔼�[− ln𝑃(𝑜Y|�̃�, 𝑢Y)]
Expected	entropy	of	observations

Gibbs	energy	(expected	under	the	approximate	prior)	- Entropy	of	the	approximate	prior
The	reason	why	we	call	it	free	energy!

𝐹 𝑜Y, 𝜇 	 = 𝔼� − ln𝑃 𝑜Y, �̃�, 𝑢Y 𝑚 − 𝐻(𝑃(�̃�, 𝑢Y|𝜇))

(Divergence	+	Surprise)	or	(Relative	Entropy	- log	evidence)
Free	energy	is	an	upper	bound	on	surprise,	because	𝐷��(. | . ≥ 0
(Gibbs	inequality)

𝐹 𝑜Y, 𝜇 	 = 𝐷��[𝑄(�̃�, 𝑢Y|𝜇)||𝑃 �̃�, 𝑢Y 𝑜Y ] − ln	P(𝑜Y|𝑚)
Posterior	(predictive)	distribution	over	hidden	states.								
Prior	(preferred)	distribution	over	future	outcomes.	

Minimizing	free	energy	corresponds	to	minimizing	divergence	
between	the	approximate	and	true	posterior.
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𝒔𝒕 ∈ 𝑺

𝑎I ∈ 𝐴

𝑢YI ∈ 𝜇 𝑠I ∈ 𝜇

𝑜I ∈ Ω

Action Perception
Inference	about	hidden	states

𝑃(𝑎I = 𝑢I) = 𝑄(𝑢I|𝜇I)

Find	which	states	are	most	likely	by	
optimizing	expectation	with	regard	
to	the	free	energy	of	observations

Generate	new	observations using	
the	generative	process

Optimize	posterior	beliefs	
and	sample	action

Pick	the	new	action	from	
the	posterior	probability

Agent
World

𝜇I = 𝑎𝑟𝑔𝑚𝑖𝑛�𝐹(𝑜Y, 𝜇)
𝑃(𝑎I = 𝑢I) = 𝑄(𝑢I|𝜇I)

1



𝑃(𝑎I = 𝑢I) = 𝑄(𝑢I|𝜇I)

Find	which	states	are	most	likely	by	
optimizing	expectation	with	regard	
to	the	free	energy	of	observations

Optimize	posterior	beliefs	
and	sample	action

𝜇I = 𝑎𝑟𝑔𝑚𝑖𝑛�𝐹(𝑜Y, 𝜇)
𝑃(𝑎I = 𝑢I) = 𝑄(𝑢I|𝜇I)

1

When	expressed	using	a	policy
�̃�∗, 𝜋Y ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛	𝐹(𝑜Y, �̃�, 𝜋Y)
𝑃(𝑎I = 𝑢I) = 𝑄(𝑢I|𝜋Y ∗)

the	negative	free	energy	of	the	approximate	posterior	predictive	density	becomes
𝑄� 𝜋 	 = 𝔼�(��,U�|V) ln 𝑃(𝑜�, 𝑠�|𝜋) + 𝐻(𝑄(𝑠�|𝜋))

A	policy	is	a	priori	more	likely	if	it	has	high	quality	or	if	its	expected	free	energy	is	small.

à Heuristically,	the	agent	believes	they	will	pursue	policies	that	minimize	the	expected	free	
energy	of	outcomes	and	implicitly	minimize	their	surprise	about	those	outcomes.



𝑃(𝑎I = 𝑢I) = 𝑄(𝑢I|𝜇I)

Find	which	states	are	most	likely	by	
optimizing	expectation	with	regard	
to	the	free	energy	of	observations

Optimize	posterior	beliefs	
and	sample	action

𝜇I = 𝑎𝑟𝑔𝑚𝑖𝑛�𝐹(𝑜Y, 𝜇)
𝑃(𝑎I = 𝑢I) = 𝑄(𝑢I|𝜇I)

1

Under	the	generative	model	of	the	future,	the	quality	of	a	policy,	𝑄� 𝜋 	,	can	be	rewritten	as
𝑄� 𝜋 	 = 𝔼�(��|V) ln 𝑃(𝑜�|𝑚) + 𝔼�(��|V) 𝐷��(𝑄(𝑠�|𝑜�, 𝜋)||𝑄(𝑠�||𝜋))

Extrinsic	value																											Epistemic	value

Extrinsic	value	is	the	utility	C 𝑜�|𝑚 = ln𝑃(𝑜�|𝑚) of	an	outcome	expected	under	the	
posterior	predictive	distribution.	It	encodes	the	preferred	outcomes	that	give	the	goal-
directed	behavior.
Epistemic	(intrinsic)	value is	the	expected	information	gain	under	predicted	outcomes.	It	
reports	the	reduction	in	uncertainty	about	hidden	states	afforded	by	observations.	The	
information	gain	is	smallest	when	the	posterior	predictive	distribution	is	not	informed	by	
new	observations.	



Prediction	Error

Action Perception

Change	predictionsChange	sensations

Sensations	- predictions



Simulation

• Simulating	foraging	in	a	T-maze	using	a	hierarchical	generative	model?



Simulation

• Simulating	foraging	in	a	T-maze	using	a	hierarchical	generative	model?
• The	agent	starts	in	the	center,	where	either	the	right	or	left	arms	are	baited	with	a	reward.
• The	lower	arm	contains	a	discriminative	cue	that	tells	the	agent	whether	the	reward	is	in	the	
upper	right	or	left	arm.

• The	agent	can	make	only	two	moves.
• The	agent	cannot	leave	the	baited	arms	after	they	are	entered.
• The	optimal	behavior	is	to	first	go	to	the	lower	arm	to	find	where	the	reward	is	located	and	
then	retrieve	the	reward	at	the	cued	location.

Discriminative	cues

Rewards



Simulation

• Simulating	foraging	in	a	T-maze	using	a	hierarchical	generative	model?
• Translate	into	a	POMDP



Simulation
• Control	states

• Hidden	states

• Observations

• Outcomes

Rewards

⊗

Context

Discriminative	cues

Location

Stimulus
⊗

ln𝑃 𝑜I = 𝑈 = [0, 𝑐, −𝑐, 𝑐, −𝑐, 0, 0]m

𝑠 = 𝑠�⨂𝑠� ∈ 𝑆

𝑢 ∈ 𝑈



Simulation



Another	usage

• A	simpler	usage	of	active	inference	as	a	belief	update	mechanism
• Belief	update	by	free	energy	minimization
• Case	of	a	bounded	rational	agent



Likelihood	model
Log	likelihood

Rationality	Index
(Bound)

ΔF[q]= 1
α

q(h)log q(h)
p0 (h)h

∑ − q(h)log p(y | h)
h
∑

Latent	variable

Prior

Complexity																		Accuracy

*	Ortega	et	al.	"Thermodynamics	as	a	theory	of	decision-making	with	information-processing	costs"	(2013)
*	Friston et	al.	"The	anatomy	of	choice:	active	inference	and	agency"	(2013)

• Free	energy	functional	with	a	rationality	index



1D
N

τ μa0

b0 μ0

τ0

• Testing	with	1-D	Gaussian	model
• Observed	data

• Priors

p(µ |τ ) = λ0τ
2π

e
−
λ0τ
2
(µ−µ0 )

2

~ N(µ0,λ0τ )

p(τ ) = Γ(a0,b0 ) =
b0a0
Γ(a0 )

xa0−1e−b0τ ~ Γ(a0,b0 )

p(D |µ,τ ) = τ
N
2

2π
e
−
τ
2

(xi−µ )
2

i=1

N

∑
~ N(µ,τ )



• Testing	with	1-D	Gaussian	model
• Free	energy	functional

• Example

F[q(µ,τ )]= − q(µ,τ )ln p(D |µ,τ )+ 1
α

∫ q(µ,τ )ln q(µ,τ )
p(µ |τ )p(τ )∫

Rationality	Index:
Low	α:	large	constraint
High	α:	low	constraint

Prior

Likelihood

q

Prior

Likelihood

q

α=0.1																											α=1.0																																	α=400

Prior

Likelihood
q
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• Testing	with	1-D	Gaussian	model
• Free	energy	functional

• Example

F[q(µ,τ )]= − q(µ,τ )ln p(D |µ,τ )+ 1
α

∫ q(µ,τ )ln q(µ,τ )
p(µ |τ )p(τ )∫

Rationality	Index:
Low	α:	large	constraint
High	α:	low	constraint

Prior

Likelihood

q

Prior

Likelihood

q
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Prior

Likelihood
q

• Random	action
• Helplessness
• Anhedonia

• Risk	seeking
• Impulsivity
• Illusory	pattern	perception



• Testing	with	1-D	Gaussian	model
• Free	energy	functional

• Example

F[q(µ,τ )]= − q(µ,τ )ln p(D |µ,τ )+ 1
α

∫ q(µ,τ )ln q(µ,τ )
p(µ |τ )p(τ )∫

Rationality	Index:
Low	α:	large	constraint
High	α:	low	constraint

Prior

Likelihood

q

Prior

Likelihood

q

α=0.1																											α=1.0																																	α=400

Prior

Likelihood
q

• Random	action
• Helplessness
• Anhedonia

• Risk	seeking
• Impulsivity
• Illusory	pattern	perception

Agent	with	risk	attitudes
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Term 2

Expectation of log likelihood under 
approximate posterior

Entropy of approximate posterior 
over the mean.

Calculation	of	the	FE	functional
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Term 4 Expectation of prior on the mean over 
approximate posterior.

Entropy of approximate posterior over 
the precision.
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Term 5 Expectation of prior on precision over 
approximate posterior.

Calculation	of	the	FE	functional



Questions	&	Comments?
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Generalities

Generative
vs.

Discriminative	Models





Generative	vs.	discriminative	models

Data	X
Label	Y

Discriminative

distance

Decision	boundary
(Hyperplane)

• Logistic	regression
• SVM
• NN

Generative

• Naïve	Bayes
• Gaussian	

Discriminant	Analysis

Discriminative	models	learn	the	(hard	or	soft)	
boundary	between	classes

Model	𝑃 𝑥 𝑦 and	𝑃 𝑦 ,	and	learn	𝑃 𝑦 𝑥
indirectly: 𝑃 𝑦 𝑥 ∝ 𝑃 𝑥 𝑦 𝑃 𝑦

Learn	𝑃 𝑦 𝑥 directly

Generative	models	model	the	distribution	of	
individual	classes



Generative	vs.	discriminative	models

Data	X
Label	Y

Model	𝑃 𝑥 𝑦 and	𝑃 𝑦 ,	and	learn	𝑃 𝑦 𝑥
indirectly: 𝑃 𝑦 𝑥 ∝ 𝑃 𝑥 𝑦 𝑃 𝑦

Generative

• Naïve	Bayes
• Gaussian	

Discriminant	Analysis
Provides a probability distribution for each class in the classification 
problem. This give us an idea of how the data is generated. It relies heavily on 
Bayes rule to define, update the prior and derive the posterior.

𝑃 𝜃 𝑦 =
𝑃 𝑦 𝜃 𝑃 𝜃

𝑃(𝑦)

likelihood Prior

Evidence

Posterior

1. Formulation	of	a	generative	model
• Likelihood	𝑃 𝑦 𝜃
• Prior	distribution	𝑃(𝜃)

2. Observation	of	data:	𝑦
3. Update	of	beliefs	upon	observations	

given	a	prior	state	of	knowledge:
𝑃 𝜃 𝑦 ∝ 𝑃 𝑦 𝜃 𝑃 𝜃





s = g(Ψ,a)+ωs

!µ = argmin !µ F(!s, !µ)

a = argmina F(!s, !µ)

!Ψ = f (Ψ,a)+ωx

ω ∈Ω

Sensations

Action

External	states

Fluctuations

Hidden	states	in	the	world

Posterior	expectations

Internal	states	of	the	agent


